Vascular endothelial growth factor acts through novel, pregnancy-enhanced receptor signalling pathways to stimulate endothelial nitric oxide synthase activity in uterine artery endothelial cells.
نویسندگان
چکیده
During pregnancy, VEGF (vascular endothelial growth factor) regulates in part endothelial angiogenesis and vasodilation. In the present study we examine the relative roles of VEGFRs (VEGF receptors) and associated signalling pathways mediating the effects of VEGF(165) on eNOS (endothelial nitric oxide synthase) activation. Despite equal expression levels of VEGFR-1 and VEGFR-2 in UAECs (uterine artery endothelial cells) from NP (non-pregnant) and P (pregnant) sheep, VEGF(165) activates eNOS at a greater level in P- compared with NP-UAEC, independently of Akt activation. The selective VEGFR-1 agonist PlGF (placental growth factor)-1 elicits only a modest activation of eNOS in P-UAECs compared with VEGF(165), whereas the VEGFR-2 kinase inhibitor blocks VEGF(165)-stimulated eNOS activation, suggesting VEGF(165) predominantly activates eNOS via VEGFR-2. Although VEGF(165) also activates ERK (extracellular-signal-regulated kinase)-1/2, this is not necessary for eNOS activation since U0126 blocks ERK-1/2 phosphorylation, but not eNOS activation, and the VEGFR-2 kinase inhibitor inhibits eNOS activation, but not ERK-1/2 phosphorylation. Furthermore, the inability of PlGF to activate ERK-1/2 and the ability of the VEGFR-2 selective agonist VEGF-E to activate ERK-1/2 and eNOS suggests again that both eNOS and ERK-1/2 activation occur predominantly via VEGFR-2. The lack of VEGF(165)-stimulated Akt phosphorylation is consistent with a lack of robust phosphorylation of Ser(1179)-eNOS. Although VEGF(165)-stimulated eNOS phosphorylation is observed at Ser(617) and Ser(635), pregnancy does not significantly alter this response. Our finding that VEGF(165) activation of eNOS is completely inhibited by wortmannin but not LY294002 implies a downstream kinase, possibly a wortmannin-selective PI3K (phosphoinositide 3-kinase), is acting between the VEGFR-2 and eNOS independently of Akt.
منابع مشابه
Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملEXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملAssociation between T-786C polymorphism of endothelial nitric oxide synthase gene and level of the vessel dilation factor in patients with coronary artery disease
Various polymorphisms on endothelial nitric oxide synthase (eNOs) gene cause reduced production of NO, the endothelial relaxing factor, and may accelerate the process of atherosclerosis. The study designed to investigate the frequency of T-786C polymorphism of the eNOs gene in patients suffering from coronary artery disease (CAD) in north-west of Iran. One hundred twenty subjects including 60 p...
متن کاملSpironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 417 2 شماره
صفحات -
تاریخ انتشار 2009